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Evolution-in-materio is a method that uses artificial evolution to exploit
properties of materials to solve computational problems without requir-
ing a detailed understanding of such properties. In this paper, we show
that using a purpose-built hardware platform called Mecobo, it is possi-
ble to evolve voltages and signals applied to physical materials to solve
two computational problems: classification and robot control. We have
investigated many experimental factors that could affect the effective-
ness of the device and the evolution-in-materio technique. On the classi-
fication problem (Iris) we show that the evolution-in-materio approach
with analogue signals gives very good results that are competitive with
a well-known effective software-based evolutionary approach. In the
case of robot control, we were able to evolve a controller that success-
fully allowed a simulated Khepera robot to fully explore its environment
without colliding with any obstacle.
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evolvable hardware machine learning classification robot control

1 INTRODUCTION

Natural evolution could be viewed as an algorithm which exploits the phys-
ical properties of materials. Evolution-in-materio (EIM) aims to mimic the
exploitation of physical properties by natural evolution by manipulating
physical systems using computer controlled evolution (CCE) [11–13, 19]. In
particular, EIM aims to exploit the properties of physical systems for solving
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2 MAKTUBA MOHID AND J. F. MILLER

computational problems. EIM was inspired by the work of Adrian Thompson
who investigated whether it was possible to evolve working electronic circuits
using a silicon chip called a Field Programmable Gate Array (FPGA). Mak-
ing sure that the configuration bitstrings could not involve a clock signal or a
flip-flop, Thompson evolved a digital circuit that could discriminate between
1kHz or 10kHz signal [25]. The task would normally call for a sequential dig-
ital circuit to do this task. Thompson wondered whether intrinsic evolution
could somehow connect digital gates with nanosecond delays into a circuit
that could solve a task which required much longer time scales. When the
evolved circuit was analysed, Thompson discovered that artificial evolution
had exploited subtle physical properties of the chip. Moreover, despite exten-
sive analysis and detailed simulation, Thompson and Layzell were unable to
explain how the evolved circuit worked [24]. Following on from this, Hard-
ing and Miller attempted to replicate these findings using a liquid crystal dis-
play. They found that computer-controlled evolution could utilize the phys-
ical properties of liquid crystal to help solving a number of computational
problems [9].

� Two input logic gates: OR, AND, NOR, NAND, etc. [12].
� Tone Discriminator: A device was evolved which could differentiate

different frequencies [9].
� Robot Controller: A controller for a simulated robot with wall avoid-

ance behavior [10].

In this paper, we describe the use of a purpose built platform called
Mecobo that facilitates computer controlled evolution of a material [15] for
solving machine learning classification problem and controlling a Khepera-
like robot. The Mecobo platform has been developed within an EU funded
research project called NASCENCE [5]. There are two versions of Mecobo
have been developed so far and they are Mecobo 3.0 and Mecobo 3.5. The
computational materials we have used in these investigations are mixtures
of single-walled carbon nanotubes (SWCNT) and a polymer. This new plat-
form allows a variety of materials to be investigated in custom designed elec-
trode arrays, using a variety of electrical signals and inputs. One of the aims
of NASCENCE is to assess the ability of EIM as a methodology for solv-
ing a wide variety of computational problems. In recent work, the technique
has been applied to solve traveling salesman problems [6], function opti-
mization [22] and bin-packing [21]. Here, we show that using the Mecobo
platform it is possible to evolve solutions to machine learning classification
problems. To evaluate the effectiveness of the technique we have compared
our results with a well-known software-based evolutionary computation
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EVOLVING SOLUTIONS TO COMPUTATIONAL PROBLEMS 3

technique called Cartesian Genetic Programming (CGP). We also evaluated
the performances of different mixtures (different ratios of SWCNT in poly-
mer) of material, different organizations of electrodes and different hardware
platforms based on classification experiments.

Evolutionary computation has been widely used to control robots [4, 23].
EIM has been used before to control simulated robot with wall avoidance
behaviour. However, the evolvable substrate was liquid crystal [10]. In that
work only two sonars, and two motors were used. In the work we present here
where we are using at least 6 sonars (we used 6 sonars for four experiments
and 8 sonars for one experiment) to control the simulated robot. Additionally,
the robot simulator we used is for a Khepera robot. It is not yet our aim to
make EIM a competitive method for solving classification problems or con-
trolling robots, we are simply trying to show that evolving configurations of
carbon nanotubes can be used to classify data or control robot. In addition,
the experiments provide a yardstick to assess various aspects of EIM using
the Mecobo platform. For instance, we can investigate what type of signals
are appropriate, and what mixtures of materials give the best results. Using
materials in the genotype-phenotype map has, at present, some drawbacks.
The main one is that it is slow, this means that we can only feasibly evaluate
relatively few potential solutions. However, it is a new approach to the solu-
tion of computational problems and as the technology is developed it could
offer advantages over conventional computational methods [20].

The organisation of the paper is as follows. In Section 2 we give a brief
conceptual overview of EIM. We describe the Mecobo EIM hardware plat-
form in Section 3. The preparation and composition of the physical compu-
tational material is described in Section 4. Section 5 describes the machine
learning classification problem. The way we have used the Mecobo platform
for classification problem is described in Section 6. We describe our classifi-
cation experiments and analysis of results in Section 6.6. Section 7 describes
the robot controlling problem. The way we have used the Mecobo platform
for controlling robots is described in Section 8. We describe our robot con-
trolling experiments and analysis of the results in Section 9. We Finally con-
clude and offer suggestions for further investigation in Section 10.

2 CONCEPTUAL OVERVIEW OF EIM

EIM is a hybrid system involving both a physical material and a digital com-
puter. In the physical domain there is a material to which physical signals can
be applied or measured. These signals are either input signals, output signals
or configuration instructions. A computer controls the application of phys-
ical inputs applied to the material, the reading of physical signals from the
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4 MAKTUBA MOHID AND J. F. MILLER

FIGURE 1
Concept of EIM [20].

material and the application to the material of other physical inputs known
as physical configurations. A genotype of numerical data is held on the com-
puter and is transformed into configuration instructions. The genotypes are
subject to an evolutionary algorithm. Physical output signals are read from
the material and converted to output data in the computer. A fitness value
is obtained from the output data and supplied as a fitness of a genotype to
the evolutionary algorithm [20]. The conceptual overview of EIM has been
shown in Figure 1.

In EIM a highly indirect genotype-phenotype mapping is employed. One
of its interesting features is that an evolutionary algorithm may be able to
exploit hitherto unknown physical variables in a material which may increase
evolvability. Software-only genotype-phenotype mappings are highly con-
strained. Natural evolution operates in a physical world and exploits the phys-
ical properties of materials (mainly proteins). Banzhaf et al. discussed the
importance of physicality and embodiment [3]. Despite this, there have been
very few attempts to date to include materials in the evolutionary process.
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Not all materials may be suitable for EIM. Miller and Downing suggested
some guidelines for choosing materials. The material needs to be recon-
figurable, i.e., it can be evolved over many configurations to get desired
response. It is important for a physical material to be able to be “reset” in
some way before applying new input signals on it, otherwise it might pre-
serve some memory and might give fitness scores that are dependent on the
past behaviour. Preferably the material should be physically configured using
small voltage and be manipulable at a molecular level [17, 20].

3 MECOBO: AN EIM HARDWARE PLATFORM

The Mecobo hardware platform has been designed and built within an EU-
funded research project called NASCENCE [5]. There are two versions of
Mecobo have been built so far and they are Mecobo 3.0 and Mecobo 3.5.

Mecobo is designed to interface a large variety of materials. The hardware
allows for the possibility to map input, output and configuration terminals,
signal properties and output monitoring capabilities in arbitrary ways. The
platform’s software component, i.e. EA and software stack, is as important as
the hardware. Mecobo includes a flexible software platform including hard-
ware drivers, support of multiple programming languages and a possibility to
connect to hardware over the internet makes Mecobo a highly flexible plat-
form for EIM experimentation [15].

It is important to appreciate that in EIM the computational substrate is
piece of material for which the appropriate physical variables to be manipu-
lated by evolution may be poorly understood (see Figure 1). This means that
the selection of signal types, i.e. inputs, outputs and configuration inputs,
assignment to I/O ports could easily not relate to material specific properties.
Thus interactions with the materials should be as unconstrained as possible.
This means that any I/O port should be allowed by the hardware to accept
any signal type. In addition, the signal properties, e.g. voltage/current levels,
AC, DC, pulse or frequency, should be allowed to be chosen during evolution.
The Mecobo hardware interface is designed to handle all these features. Many
computational problems require input data so the interface thus Mecobo has
been designed to allow user-defined external input data signals.

Figure 2 shows an overview of the hardware interface. In the figure an
example set up is shown in the dotted box. The example genome defines pin
2 to be the output terminal, pin 1 to be the data input and pin 3 - 12 to be
configuration signals. The architecture is controlled by a scheduler control-
ling the following modules: Digital I/O can output digital signals and sample
responses. Analogue output signals can be produced by the DAC module.
The DAC can be configured to output static voltages or any arbitrary time
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6 MAKTUBA MOHID AND J. F. MILLER

FIGURE 2
Overview of the complete system.

dependent waveform. Sampling of analogue waveforms from the material is
performed by the ADC. Pulse Width Modulated (PWM) signals are produced
by the PWM module.

The system’s scheduler can set up the system to apply and sample signals
statically or produce time scheduled configurations of stimuli/response. The
recorder stores samples, digital discrete values, time dependent bit strings,
sampled analogue discrete values or time dependent analogue waveforms.
Note that the recorder can include any combination of these signals.

In the interface all signals pass a crossbar, i.e. pin routing. Pin routing is
placed between the signal generator modules and the sampling buffer (PWM,
ADC, DAC, Digital I/O and Recorder) making it possible to configure any
terminal of a material to be input, output or receive configuration signals.

The material signal interface presented in Figure 2 is very flexible. It not
only allows the possibility to evolve the I/O terminal placement but also a
large variety of configuration signals are available to support materials with
different sensitivity, from static signals to time dependent digital functions.
At present, the response from materials can be sampled as purely static sig-
nals (digital or analogue), digital pulse trains. Mecobo 3.0 only supports digi-
tal input and output, wherever, Mecobo 3.5 allows the direct input and output
of analogue signals. Further the scheduler can schedule time slots for differ-
ent stimuli when time dependent functions are targeted or to compensate for
configuration delay, i.e. when materials need time to settle before a reliable
computation can be observed.

3.1 Hardware implementation
The hardware implementation of the interface is shown as a block diagram in
Figure 3(a). Mecobo is designed as a PCB with an FPGA as the main compo-
nent. The system shown in Figure 2 is part of the FPGA design together with
communication modules interfacing a micro controller and shared memory.
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(a) Mecobo block diagram.

(b) Picture of Mecobo.

FIGURE 3
Hardware interface implementation overview.

As shown in Figure 3(a) the digital and analogue designs are split into two.
All analogue components are placed on a daughter board; such as crossbar
switches and analogue-digital converters. This allows the redesign of the ana-
logue part of the system without changing the digital part of the motherboard.
The system shown in Figure 3(a) is an example of the current system. The
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Parameter Name Description Note

Amplitude 0 or 1 corresponding to Wave signal amplitude
0V or 3.5V (Mecobo 3.0), must be 1
Range [0, 255] corresponding
to [-5V, 5V] (Mecobo 3.5)

Frequency Frequency of square wave Irrelevant if fixed
signal voltage input

Cycle Time Percentage of period for Irrelevant if fixed
which square wave signal is 1 voltage input

Phase Phase of square wave signal Irrelevant if fixed
voltage input

Start time Start time of applying voltage Measured in milliseconds
to electrodes

End time End time of applying voltage Measured in milliseconds
to electrodes

TABLE 1
Adjustable Mecobo input parameters.

micro controller stands as a communication interface between the FPGA and
the external USB port.

Figure 3(b) shows the motherboard with the Xilinx LX45 FPGA, Silicon
Labs ARM based EFM32GG990 micro controller connected to a 12 terminal
material sample.

Mecobo 3.0 hardware allows only two types of inputs to the material,
which are digital. The input is either a constant voltage (0V or 3.5V) or a
square wave signal. In case of Mecobo 3.5, a constant analogue voltage is
possible other than the digital square wave signal as an input. It has analogue
input in a range [-5V, 5V]. The amplitude of the input signal determines the
voltage level. The amplitude of the analogue input signal has a range [0, 255],
where value 0 corresponds to -5V and value 255 corresponds to 5V.

Different characteristics or input parameters associated with the inputs
of Mecobo 3.0 and Mecobo 3.5 can be chosen. These input parameters are
described in Table 1.

The start time and end time of each input signal determine how long an
input is applied. Mecobo 3.0 only samples using digital voltage thresholds,
hence the material output is interpreted as strictly high or low, (i.e. 1 or 0
respectively). Mecobo 3.5 supports analogue output in a range [-5V, 5V].
The output value of Mecobo 3.5 has a range [-4096, 4096], where value -
4096 corresponds to -5V and value 4096 corresponds to 5V.

The output is recorded in a buffer. Three output parameters, i. e., a user-
defined output sampling frequency along with the start time and end time of
reading output electrode determine the buffer size of output samples. If the
output frequency is Fout , start time T imestart (start time of reading electrode)
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and end time is T imeend (end time of reading electrode), then the buffer size
is Bu fsize is given by:

Bu fsize = Fout (T imeend − T imestart )/1000 (1)

Here, T imestart and T imeend are measured in milliseconds.
However, in practice due to pin latency, the real buffer size is generally

smaller. It should be noted that in all experiments described here, inputs are
applied for a number of milliseconds and the outputs are accumulated in a
buffer for the same number of milliseconds. This has been referred as input-
output timing in this paper.

In case of both versions of Mecobo platform, the sequenced actions do
not take place at the same instant of time. It maintains a schedule. It happens
even if the same start times and end times are used for all inputs, configuration
inputs and output(s). It takes some time for Mecobo to circulate a signal to
each electrode, which is ≈ 1 millisecond. So, for 12 electrodes, it will take
≈ 12 milliseconds (more than 12 milliseconds) to circulate inputs (inputs
and configuration inputs) to electrodes and read the output buffer(s) from
electrode(s) due to the fact of scheduling, even if the same start and end
times are used for all electrodes. According to observation, for 12 electrodes,
it took 16 milliseconds to get a reasonable buffer size. The response time 16
milliseconds is a long time.

4 THE COMPUTATIONAL MATERIAL

The experimental material consists of SWCNT mixed with polymethyl
methacrylate (PMMA) or polybutyl methacrylate (PBMA) and dissolved in
anisole (methoxybenzene)∗ . The sample is baked causing the anisole to evap-
orate. This results in material which is mixture of SWCNT and PMMA/
PBMA. Different mixtures of material have been used in experiments.

Carbon nanotubes are conducting or semi-conducting and role of the
PMMA/ PBMA is to introduce insulating regions within the nanotube net-
work, to create non-linear current versus voltage characteristics. The idea is
that this might show some interesting computational behavior. Another bene-
fit of the polymer is to help with dispersion of the nanotubes in solution. The
preparation of experimental material is given below:

� 20 μL of material are dispensed onto the electrode array;
� This is dried to leave a ‘thick film”

∗ Mark K. Massey and Michael C. Petty prepared the materials used as substrates and the electrode
masks for our experiments
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10 MAKTUBA MOHID AND J. F. MILLER

FIGURE 4
Slide with one electrode array and one sample having 12 electrodes.

FIGURE 5
Slide with two electrode arrays and two samples having 16 electrodes

The experimental material is placed in the middle of a plate of the elec-
trode array. Two different arrangements of electrode array in slides have been
used in the experiments. In one arrangement, a single electrode array is placed
on the slide. This is prepared by placing one drop of the experimental mate-
rial in the middle of the slide. Twelve gold electrodes arranged on one side are
connected directly with the drop. This electrode arrangement is shown in Fig-
ure 4. In another arrangement, two electrode arrays are placed in each slide.
One drop of experimental material is placed in the middle of each electrode
array. Sixteen gold electrodes (eight electrodes on each side) are connected
directly with each sample on the electrode array. This electrode arrangement
is shown in Figure 5. The electrode array is wired directly with the Mecobo
board via a suitable connector.

The materials that have been used in classification and robot controlling
experiments are described in Table 2.

5 MACHINE LEARNING CLASSIFICATION PROBLEM

Classification is an important class of problems in machine learning. The
objective is to correctly decide which class a set of data instances belongs
to. The EIM approach has been evaluated here on one classification problem
obtained from [2]: Iris [7]. The Iris dataset has four attributes which are clas-
sified into one of the three classes. The dataset contains 150 instances with
real-valued attributes. The first fifty instances are class 1, the second fifty
class two and the third set of 50 are class 3. The dataset was divided into two
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Material Mixture of Material
Sample (weight% fraction
Number Arrangement of Electrodes of PMMA/PBMA)

Sample 1 2 samples, 16 electrodes connected with 1.0% SWCNT in PBMA
each sample (8 electrodes in each side
of one sample)

Sample 2 1 sample, 12 electrodes connected in 1 side 1.0% SWCNT in PBMA
Sample 3 1 sample, 12 electrodes connected in 1 side 1.0% SWCNT in PMMA
Sample 4 1 sample, 12 electrodes connected in 1 side 0.71% SWCNT in PMMA
Sample 5 1 sample, 12 electrodes connected in 1 side 0.50% SWCNT in PMMA
Sample 6 1 sample, 12 electrodes connected in 1 side 0.10% SWCNT in PMMA
Sample 7 1 sample, 12 electrodes connected in 1 side 0.05% SWCNT in PMMA
Sample 8 1 sample, 12 electrodes connected in 1 side 0.02% SWCNT in PMMA
Sample 9 1 sample, 12 electrodes connected in 1 side 0.01% SWCNT in PMMA
Sample 10 1 sample, 12 electrodes connected in 1 side Only PMMA

TABLE 2
Description of materials used in experiments.

groups (training and test set) of 75 instances each. Each set contained exactly
25 instances of each class.

6 CLASSIFYING DATA USING EIM

6.1 Methodology
Twelve different sets of experiments were performed. The first (A) and sec-
ond (B) sets of experiments were performed with Mecobo 3.5 and the remain-
ing ten sets (C-L) of experiments were performed with Mecobo 3.0. Results
of sets A and B were used to compare the performances of different types
of configuration inputs (comparison between all static analogue voltages and
mixtures of static analogue voltages and digital square waves). The first five
sets (A-E) of experiments were performed with material sample 1 (accord-
ing to Table 2). Of these, the results of sets B and C were used to compare
the performances of two Mecobo platforms, i.e. the performance of using all
analogue inputs, outputs and configuration inputs against the performance of
using all digital inputs, outputs and configuration inputs. The experiments of
sets C and D were used to compare results using different input-output tim-
ings (the input-output timings of sets C and D were 32 milliseconds and 128
milliseconds respectively). Experiments of sets E and F were used to inves-
tigate whether different organisations of electrodes play any role or not. Set
F used material sample 2, i.e. both sets E and F used the same mixture of
material, but the organisation of electrodes was different. An investigation
was performed using experiments of sets F and G to see whether different
polymers matter or not. Set G used material sample 3, i.e sets F and G used
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12 MAKTUBA MOHID AND J. F. MILLER

FIGURE 6
The examples of genotype used in classification problem using two different material samples
having different organisations of electrodes, where green arrows (away from device) are used
to indicate reading outputs from the output electrodes, yellow arrows (solid toward device) are
used to show inputs to input electrodes and blue arrows (hashed and toward device) are used to
show configuration inputs being sent to 5 electrodes.

the same percentage of SWCNT but in the different polymer. Experiments of
sets G-L compared results obtained by different percentages of SWCNT in
PMMA, where set H used material sample 4, set I used sample 5, J used sam-
ple 6, K used sample 7 and set L used sample 8. The results of experiments
of set B was compared with the results of CGP to evaluate the effectiveness
of the EIM method for solving classification problems.

All of these experiments were performed with electrode arrays having 12
electrodes. However, in the case of material sample 1, one electrode array
was used, where only 12 electrodes were used from the 16 electrodes of
that electrode array, these were the middle 6 electrodes from each side of
one sample. Four electrodes were used as inputs (i.e. are instance-related), 3
electrodes were used as outputs (i.e. defining the class) and 5 electrodes were
used as configuration inputs. Each output electrode was used for each out-
put class. Each chromosome defined which electrodes were outputs, inputs
(received square waves) or received the configuration inputs (square waves
or constant voltages). The examples of genotype used in classification prob-
lem are shown in Figure 6, where green arrows (away from device) are used
to indicate reading outputs from the output electrodes, yellow arrows (solid
toward device) are used to show inputs to input electrodes and blue arrows
(hashed and toward device) are used to show configuration inputs being sent
to 5 electrodes.
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The input-output timing was 32 milliseconds for the experiments of sets
A-C and 128 milliseconds for sets D-L. A 25 KHz output sampling frequency
was used for all sets of experiments.

In case of Mecobo 3.0, the frequency of the square wave input signal was
used for input mapping and the average transition gap (this is described in
Section 6.4) was used for determining output classes. In case of Mecobo 3.5,
the amplitude of the static analogue input signal was used for input mapping
and average of the sample values of the output buffer was used to determine
output classes.

The fitness calculation in the EA only used training data. Once the EA was
finished, the configurations of electrodes having the best fitness were tested
with the test data to determine their ability to predict correctly unseen data
(the test set).

In case of sets A-D, the experiments were carried out up to 50 generations
and in case of sets E-L, the experiments were carried out up to 500 genera-
tions. Ten independent runs were carried out for the sets A and D-L. Twenty
independent runs were carried out for the sets B and C. It should be noted
that twenty evolutionary runs were carried out only in those experiments that
dealt with the comparisons with CGP and the two Mecobo platforms. Other
experiments were carried out up to 10 runs as many sets of experiments were
needed to perform all these different types of investigations.

The experimental settings of all sets of classification experiments are sum-
marised in Table 3 to get a clear overview of the experiments. The purposes
of performing the classification experiments are described in Table 4.

6.2 Genotype Representation
Each chromosome used ne = 12 electrodes at a time. In cases of experiments
A and C-L, associated with each electrode there were six genes which defined
which electrode was used as an input or output or configuration input, or
characteristics of the input applied to the electrode: signal type, amplitude,
frequency, phase, cycle time (Section 3). This means that each chromosome
required a total of 12 × 6 = 72 genes. Mutational children were created from
a parent genotype by mutating a single gene (i.e. one gene of 72).

In case of experiments B, associated with each electrode there were two
genes which defined which electrode was used as an input or output or con-
figuration input, or amplitude of the input applied to the electrode (Section
3). This means that each chromosome required a total of 12 × 2 = 24 genes.
Mutational children were created from a parent genotype by mutating a single
gene (i.e. one gene of 24).

The values that genes could take are shown in Table 5. i takes values 0, 1,
. . . 11.

IJUC˙0167˙Mohid˙V1 13
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No. No. Mat. Mecobo In. Out. Conf. In. Out.
Set of gen. of run sam. vers. sig. sig. volt. map. map. Time

A 50 10 1 3.5 AS A M A SB 32
B 50 20 1 3.5 AS A AS A SB 32
C 50 20 1 3.0 DW D MD F TG 32
D 50 10 1 3.0 DW D MD F TG 128
E 500 10 1 3.0 DW D MD F TG 128
F 500 10 2 3.0 DW D MD F TG 128
G 500 10 3 3.0 DW D MD F TG 128
H 500 10 4 3.0 DW D MD F TG 128
I 500 10 5 3.0 DW MD F TG 128
J 500 10 6 3.0 DW D MD F TG 128
K 500 10 7 3.0 DW D MD F TG 128
L 500 10 8 3.0 DW D MD F TG 128

TABLE 3
The experimental settings of all sets of classification experiments. The “No. of gen.” and “No.
of run” columns show the number of generations and number of runs of the experiments
respectively. The “Mat. sam.” and “Mecobo vers.” columns show the material sample number
(according to Table 2) and version of Mecobo hardware respectively. The “In. sig.”, “Out. sig.”
and ”Conf. volt.” columns show the types of used input signals (AS=analogue static voltages,
DW=digital square waves), output signals (A=analogue, D=digital) and configuration inputs
(AS=analogue static voltages, MD=mixtures of digital square waves and digital static voltages,
M=mixtures of digital square waves and analogue static voltages) respectively. The “In. map.”
and “Out. map.” columns show the used input mapping (A=amplitude mapping, F=frequency
mapping) and output mapping (SB=average of sample values of the output buffer, TG=average
transition gap) respectively. The last column shows the input-output timing (measured in mil-
liseconds) used in the experiments. It should be noted that all sets of experiments used 12 elec-
trodes of the electrode array and a 25 KHz output sampling frequency.

Experiments Purpose

Sets A, B Comparison of the performance of using all static analogue voltages
against the performance of using mixtures of static analogue
voltages and digital square waves.

Sets B, C Comparison of the performance of using all analogue inputs, outputs
and configuration inputs against the performance of using all digital
inputs, outputs and configuration inputs (comparison of the
performances of two Mecobo platforms).

Sets C, D Comparison of results using different input-output timings.
Sets E, F Comparison of results using different organisations of electrodes.
Sets F, G Comparison of results using different polymers.
Sets G-L Comparisons of results using different percentages of SWCNT in PMMA.
Set B Comparison of experimental results against the results of CGP.

TABLE 4
The purposes of performing the classification experiments. The first column shows the sets of
experiments. The second column shows the purpose.

IJUC˙0167˙Mohid˙V1 14
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Signal applied to, or read from
Gene symbol i th electrode Allowed values

pi Which electrode is used 0, 1, 2 . . . 11
si Type (Irrelevant for set: B) 0 (constant), 1(square wave)
ai Amplitude 0 , 1 (For sets: C-L)

1, 2 . . . 254 (for sets: A, B)
fi Frequency (Irrelevant for set: B) 500 ,501 . . . 10K
phi Phase (Irrelevant for set: B) 1, 2 . . . 10
ci Cycle time (Irrelevant for set: B) 0, 1, 2 . . . 100

TABLE 5
Description of genotype for classification experiments

The genotype for a chromosome of an individual consists of the 72 genes is
shown below:

p0s0a0 f0 ph0c0 . . . p11s11a11 f11 ph11c11

The genotype for a chromosome of an individual consists of the 24 genes is
shown below:

p0a0 . . . p11a11

For experiments A, C-L, the first 24 gene values of a chromosome are related
to inputs. These are:

p0s0a0 f0 ph0c0 . . . p3s3a3 f3 ph3c3

For experiments B, the first 8 gene values of a chromosome are related to
inputs. These are:

p0a0 . . . p3a3

For experiments A, C-L, the last 18 gene values of a chromosome are related
to outputs. These are:

p9s9a9 f9 ph9c9 . . . p11s11a11 f11 ph11c11

For experiments B, the last 6 gene values of a chromosome are related to
outputs. These are:

p9a9 p10a10 p11a11

In these input and output genes, only the first pi (here the value of i is 0-3
and 9-11) has any effect, the remainder are redundant. The gene pi decides
which electrode will be used for the input or output of the device. Thus, muta-
tions in this gene can choose a different electrode to be used as an input or
output.
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6.3 Input Mapping
In experiments C-L, each of the inputs to the electrode array was a square
wave of a particular frequency. The frequency was determined by a linear
mapping of attribute data. This is described as follows.

Denote the i th attribute in a dataset by Ii , where i takes values 1, 2, 3, 4.
Denote the maximum value and minimum value taken by this attribute in the
whole dataset by Iimax and Iimin respectively. Denote the maximum allowed
frequency and minimum allowed frequency by Fmax and Fmin respectively.
Then the linear mapping given in Equation 2 allows the i th attribute of an
instance Ii to map to a square wave frequency Fi which was applied to a
given electrode.

Fi = ai Ii + bi (2)

where the constants ai and bi are found by setting Ii and Fi to their respective
maximum and minimum and solving for ai and bi .

ai = (Fmax − Fmin)/(Iimax − Iimin ) (3)

and

bi = (Fmin Iimax − Fmax Iimin )/(Iimax − Iimin ) (4)

In the experiments, Fmin = 500 Hz and Fmax = 10000 Hz. The phase, cycle
time and amplitude of input signal were set to 1, 50% and 1 respectively.

In experiments A and B, each of the inputs to the electrode array was a
static voltage of a particular amplitude. The amplitude was determined by a
linear mapping of attribute data. That means, amplitude was used instead of
frequency for the input mapping, where maximum amplitude value was 254
and minimum amplitude value was 1. The mapping equation is the same as
other experiments (Equation 2), but instead of frequency, the amplitude was
used in the equation.

6.4 Output Mapping
The class that an instance belongs to was determined by examining the output
buffers which contain samples taken from the output electrodes. Mecobo 3.0
can only recognise binary values, so the output buffers contain bitstrings. So,
in experiments C-L, the transitions from 0 to 1 in the output buffers were used
to calculate the class that an instance belongs to. For each output buffer, the
positions of transitions were recorded and the gaps between consecutive tran-
sitions were measured and an average calculated. A transition-based mapping
was used as it is frequency related. Since instance data affects frequencies of
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FIGURE 7
An example of average transition gap calculation for an output electrode

applied signals, it seemed natural to use the method of reading output buffer
bitstrings, which is itself frequency related. An example of average gap cal-
culation for an output electrode is shown in Figure 7

The output class was determined by the output buffer with the largest aver-
age transition gap. If two or more buffers had the same average gap, then
the class was determined by the first such buffer encountered (in precedence
order: 1, 2, 3). For instance, if the second output buffer had the highest aver-
age gap, the output class would be predicted to be class 2.

Mecobo 3.5 supports analogue outputs. So, in case of experiments A and
B, average values of output buffers were used to calculate the class that an
instance belongs to. The output class was determined by the output buffer
with the largest average value. If two or more buffers had the same average
value, then the class was determined by the first such buffer encountered (in
precedence order: 1, 2, 3). This mapping was used as it seems more closely
related to amplitude.

6.5 Fitness Score
The fitness calculation required counts to be made of the number of true
positives T P , true negatives T N , false positives, F P and false negatives,
F N . For an instance, having a class c, according to the dataset and a predicted
class p, the T P , T N , F P , and F N can be calculated using Equation 5. The
explanation of this is as follows. If the predicted p is correct, then it is a true
positive, so T P should be incremented. It is also a true negative for the other
two classes, hence T N should be incremented by two. If the predicted class
is incorrect, then it is a false positive for the class predicted, so F P should be
incremented. It is also a false negative for the actual class of the instance, so
F N should be incremented. Finally, the remaining class is a true negative, so
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T N should be incremented.

if p = c then T P = T P + 1; T N = T N + 2

if p �= c then F P = F P + 1; F N = F N + 1; T N = T N + 1

(5)

Once all instances have been classified, the fitness of a genotype can be cal-
culated using Equation 6 [1].

fitness = T P.T N

(T P + F P)(T N + F N )
(6)

So, if all instances are correctly predicted, the fitness is 1 since in this case,
F P = 0 and F N = 0. In the case that all instances are incorrectly predicted,
T P = 0 and T N = 0, so fitness is zero.

6.6 The Experimental Details
In case of all sets of experiments, a 1 + λ − E S with λ = 4 was used. The
1 + λ − E S evolutionary algorithm has a population size of 1 + λ and selects
the genotype with the best fitness to be the parent of the new population. The
remaining members of the population are formed by mutating the parent.

As said before that in case of sets A-D, the experiments were carried out
up to 50 generations and in case of sets E-L, the experiments were carried
out up to 500 generations. Ten independent runs were carried out for the sets
A, D-H and I-L and twenty independent runs for the sets B and C. It took
more than 12 hours (one evolutionary run) to run 500 generations on the Iris
training set with input-output timing 128 milliseconds.

To evaluate the effectiveness of the EIM method for solving classification
problems we compared results with those obtainable using CGP using the
same 1 + 4 evolutionary algorithm over the same number of generations
using the same fitness function. CGP is a graph-based form of genetic pro-
gramming [18]. The genotypes encode directed acyclic graphs and the genes
are integers that represent where nodes get their data, what operations nodes
perform on the data, and where the output data required by the user is to be
obtained. CGP was applied to solve classification problems before. Völk et
al. applied CGP to classify mammograms [27]. Harding et al. presented a
version of CGP that could handle multiple data types and then applied it to
find solutions to multiple classification tasks [8]. In classification problems
the number of outputs, nO is chosen to be equal to the number of classes in
the dataset. The class of a data instance is defined as the class indicated by
the maximum numerical output. The function set chosen for this study was
defined over the real-valued interval [0.0, 1.0] and consisted of the following
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primitive functions of their inputs. The functions were assumed to have three
inputs, z0, z1, z2 (but some are ignored):

(z0 + z1)/2; (z0 − z1)/2; z0z1;
if |z1| < 10−10 then 1 else if |z1| > |z0| then z0/z1 else z1/z0;
if z0 > z1 then z2/2 else 1 − z2/2.

We used three mutation parameters. A percentage for mutating connec-
tions, μc and functions, μ f . Mutation of outputs μo, is done probabilistically.
In all experiments μc = 3%, μ f = 3%, and μo = 0.5. The output mutation
probability was set as 0.5 because there are only as many outputs as there
are classes. We chose a linear CGP geometry by setting the number of rows,
nr = 1 and the number of columns, nc = 100 with nodes being allowed to
connect to any previous node.

In case of all experiments of the experimental material and CGP of clas-
sification problems, a child replaced the parent if its fitness was greater than
or equal to the parent.

The Results
As mentioned before, experiments A and B were performed using Mecobo
3.5 and the Iris dataset with material sample 1. Mecobo 3.5 is located in Nor-
way and the experiments were performed via the internet by connecting with
Norway Mecobo board. Usually, it takes some extra time to communicate and
then takes more time to perform the experiment. That is why the input-output
timing was decreased to 32 milliseconds and also each run was carried out
up to 50 generations. As mentioned before that Mecobo 3.5 supports static
analogue input, digital square wave input and analogue output. In addition,
no more than 8 static analogue inputs (inputs and configuration inputs) can
be sent via Mecobo 3.5. It should be noted that Mecobo 3.5 stops working if
more than 8 analogue static inputs are used. If more than 8 analogue static
inputs are required to use, it is done by sending 8 static analogue inputs and
making the remaining inputs undefined by the program. If any electrode is
connected with the material and left undefined by the program, Mecobo 3.5
connects static voltage of -2.3V using that electrode by default. That means,
in any case if more than 8 static analogue inputs are needed to be sent to the
material, the remaining inputs are set as static -2.3V by default by Mecobo
3.5. In experiments B, 4 static analogue inputs and 5 static analogue config-
uration inputs were used, i.e. in total 9 static analogue inputs were needed
to be sent to the material via Mecobo 3.5, the last 1 configuration input was
set as static -2.3V by Mecobo 3.5 irrespective of the voltage level set by
the genotype for that configuration input. In experiments A, it was restricted
via the program that no more than 4 configuration inputs would have static
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Static analogue voltages Mixtures of static analogue voltages
Accuracy (set B) and digital square waves (set A)

Training 93.33% 82.8%
Test 87.87% 73.2%

TABLE 6
Comparative results of different input signal combinations (static analogue voltages against mix-
tures of static analogue voltages and digital square waves) of Mecobo 3.5. Both of these experi-
ments were performed using Iris dataset with material sample 1 up to 50 generations (the input-
output timing was 32 milliseconds). The comparison was performed over ten evolutionary runs.
Accuracy is the percentage of the training or test set correctly predicted.

analogue voltages, i.e. at least 1 configuration input must be a digital square
wave signal. The results of experiments A and B were compared over ten
runs as experiments A were performed up to 10 runs. It should be noted that
the results of first ten runs from the twenty runs of experiments B were used
in this comparison. The detailed comparison results are shown in Table 6.

After analysis of the results of experiments A and B, it has been found
that the input signals (inputs and configuration inputs) having only static
analogue voltages show better results than the results obtained using mix-
tures of static analogue voltages and digital square waves for inputs and con-
figuration inputs. The results of the experiments A and B have been com-
pared using the non-parametric two-sided Mann-Whitney U-test and the two-
sample Kolmogorov-Smirnov (KS) test [14]. The effect size [26] statistic has
also been computed. It has been found that the difference of the results of
experiments A and B is statistically significant according to U-Test (< 0.05)
and KS-Test (< 0.05) and also the effect size is large. A U-or KS test value of
< 0.05 indicates that the difference between two datasets is statistically sig-
nificant. The effect size, A value shows the importance of this difference con-
sidering the spread of the data; with values A < 0.56 showing small impor-
tance, 0.56 <= A < 0.64 medium importance and A >= 0.64 large impor-
tance. Therefore, if a comparison between results is shown to be statistically
significant with a medium or large effect size, then it can be said reasonably
that any difference is not due to under sampling. It should be noted that the
statistical significance tests have been performed using total number of cor-
rected instances (combined on training and test sets) of all runs and the same
ranges have been used for determining the effect size in case of all compar-
isons in these machine learning classification experiments.

The results of experiments B and C show the comparison of the perfor-
mance of Mecobo 3.5 against the performance of Mecobo 3.0, i.e. the com-
parison of the performance of using analogue inputs, outputs and configu-
ration inputs against the performance of using digital inputs, outputs and
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Mecobo 3.5 Mecobo 3.0
(analogue inputs, outputs and (digital inputs, outputs and

Accuracy configuration inputs) (set B) configuration inputs) (set C)

Training 91.33% 66.93%
Test 86.6% 60.73%

TABLE 7
Comparative results of performances of Mecobo 3.5 and Mecobo 3.0. Both of these experiments
were performed using Iris dataset with material sample 1 up to 50 generations (the input-output
timing was 32 milliseconds). Twenty evolutionary runs were carried out. Accuracy is the per-
centage of the training or test set correctly predicted.

configuration inputs. The comparison was performed over 20 runs with 50
generations for each run, where the input-output timing was 32 milliseconds.
The detailed results are shown in Table 7.

After analysis of the results of experiments B and C, it has been found that
the performance of using analogue inputs, outputs and configuration inputs
is far better than the performance of using digital inputs, outputs and con-
figuration inputs, i.e. the performance of Mecobo 3.5 is far better than the
performance of Mecobo 3.0. Statistical significance tests have also been per-
formed, and it has been found that the difference is statistically significant
according to U-Test (< 0.05), KS-Test (< 0.05) and also the effect size is
large.

As mentioned before that the experiments A-C used 32 milliseconds as
input-output timing, where the rest used 128 milliseconds. It was investi-
gated whether different input-output timings show any significant difference
in results or not. Experiments C and D were used for this comparison. Both of
these used material sample 1 with Mecobo 3.0. The experiments were carried
out up to 50 generations and the results were compared using 10 runs. It has
been found from the results that the difference is not statistically significant
according to U-Test (< 0.05) and KS-Test (< 0.05). The results are shown in
detail in Table 8.

Input-output timing Input-output timing
Accuracy 32 milliseconds (set C) 128 milliseconds (set D)

Training 65.87% 68.4%
Test 61.2% 63.6%

TABLE 8
Comparative results of experiments C and D having different input-output timings (32 millisec-
onds and 128 milliseconds respectively). Both of these experiments were performed using Iris
dataset with material sample 1 up to 50 generations. Ten evolutionary runs were carried out.
Accuracy is the percentage of the training or test set correctly predicted.
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Material sample 1 Material sample 2
Accuracy (set E) (set F)

Training 84.8% 84.4%
Test 72.13% 78.27%

TABLE 9
Comparative results of experiments E and F using different material samples (sample 1 and sam-
ple 2 respectively) having different organisations of electrodes. Both of these experiments were
performed using Iris dataset with Mecobo 3.0 up to 500 generations (the input-output timing
was 128 milliseconds). Ten evolutionary runs were carried out. Accuracy is the percentage of
the training or test set correctly predicted.

Experiments E and F used the same material mixture (material sample 1
and material sample 2 respectively) and the same hardware platform (Mecobo
3.0), but different organisations of electrodes (Table 2). The results of these
two experiments were compared to investigate whether different organisa-
tions of electrodes matter or not. Both of these experiments were carried out
up to 10 runs with 500 generations (the input-output timing was 128 mil-
liseconds). The statistical significance tests have showed that the difference
of results is insignificant according to U-Test (< 0.05) and KS-Test (< 0.05).
The detailed results are shown in Table 9.

The same percentage (1.0%) of SWCNT was used in the different polymer
(PBMA and PMMA) in material sample 2 and material sample 3 (Table 2).
Material sample 2 (contains PBMA) and material sample 3 (contains PMMA)
were used in experiments F and G respectively. The results of these two sets
were compared to investigate whether different polymers play any role in
computation or not. Both of these experiments were performed up to 10 runs
with 500 generations (the input-output timing was 128 milliseconds). The sta-
tistical significance tests have showed that the difference of results is insignif-
icant according to U-Test (< 0.05) and KS-Test (< 0.05). The detailed results
are shown in Table 10.

SWCNT in PBMA SWCNT in PMMA
Accuracy (set F) (set G)

Training 84.40% 82.13%
Test 78.27% 72.27%

TABLE 10
Comparative results of experiments F and G using different material samples (sample 2 and
sample 3 respectively) having the same percentage (1.0%) of SWCNT in the different polymer
(PBMA and PMMA respectively). Both of these experiments were performed using Iris dataset
with Mecobo 3.0 up to 500 generations (the input-output timing was 128 milliseconds). Ten
evolutionary runs were carried out. Accuracy is the percentage of the training or test set correctly
predicted.
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Material SWCNT Average training Average test
Set sample no. in PMMA accuracy accuracy

G 3 1.0% 82.13% 72.27%
H 4 0.71% 80.67% 71.07%
I 5 0.50% 81.73% 71.6%
J 6 0.10% 81.73% 71.6%
K 7 0.05% 85.07% 72.27%
L 8 0.02% 80.93% 69.47%

TABLE 11
Comparative results of different percentages of SWCNT in PMMA. All of these experiments
were performed using Iris dataset with Mecobo 3.0 up to 500 generations (the input-output tim-
ing was 128 milliseconds). The comparisons were performed over ten evolutionary runs. The
first column shows the set of experiments. The second column shows the material sample num-
ber (Table 2). The third column shows the weight percent fraction of SWCNT in PMMA. The
fourth and fifth columns show the average training accuracy and average test accuracy of the
experimental material. Accuracy is the percentage of the training or test set correctly predicted.
It has been observed by investigation that the lowest percentage of SWCNT required for compu-
tation is 0.02% (approximately) (weight percent fraction in polymer). Lower than this percentage
or empty electrode does not perform any evolution at all, where the output buffers are always
full of zeroes.

Different percentages of SWCNT were used in PMMA in material sam-
ples 3-8 (Table 2), which were used in experiments G-L respectively. The
performances of different percentages of SWCNT were compared using the
results of experiments G-L. The comparisons were performed over ten runs
up to 500 generations for each run (the input-output timing was 128 millisec-
onds). The detailed results are shown in Table 11.

It has been found from the results of Table 11 that material sample 7
(0.05% SWCNT in PMMA) shows the best result among the results obtained
by all other percentages of SWCNT in PMMA according to the average train-
ing accuracies and the average test accuracies. Statistical significance tests
have also been performed using the results of each of the pairs of the mate-
rial samples 3-8. It has been found that the difference of the results of each
of the pairs of material samples 3-8 (sets G-L respectively) is statistically
insignificant according to U-Test (< 0.05) and KS-Test (< 0.05). It has been
observed by investigation that the lowest percentage of SWCNT required for
computation is 0.02% (approximately) (weight percent fraction in polymer).
Lower than this percentage or empty electrode does not perform any evolu-
tion at all, where the output buffers are always full of zeroes.

If all the results of all sets of experiments are considered, it has been found
that the results of experiments B are the best since they have acquired the
highest accuracies in case of both training and test data. As the results of
experiments B are the best, the results were compared with the results of the
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Avg. train. Avg. test Best Avg. train. Avg. test
Data acc. of acc. of acc. of acc. of acc. of Best acc.

Set set exp. mat. exp. mat. exp. mat. CGP CGP of CGP

B Iris 91.33% 86.6% 97.33% 87.2% 84.4% 96.67%

TABLE 12
Comparative results of experimental material (experiments of set B) with CGP on machine learn-
ing classification problem using Iris dataset. The experiments B were performed using material
sample 1 with Mecobo 3.5 (the input-output timing was 32 milliseconds). The comparison was
performed over twenty evolutionary runs and up to 50 generations for each run. The first column
shows the set of experiments and second column shows the dataset on which the experiments
were performed. The third, fourth and fifth columns show average training accuracy, average
test accuracy and best accuracy of experimental material respectively. The sixth, seventh and
eighth columns show average training accuracy, average test accuracy and best accuracy of CGP
respectively. Accuracy is the percentage of the training or test set correctly predicted. “U-Test”,
“KS-Test” and “Ef. sz.” columns show results of statistical significance tests (L = large, M =
medium, S = small). The statistical significance tests have been performed using total number
of corrected instances (combined on training and test sets) of all runs. ‘�’ of “U-Test” and “KS-
Test” columns indicates that the difference between the two results is statistically significant and
‘X’ indicates that the difference is not statistically significant.

well-known CGP. It has been found that the average results (accuracies) of
experiments B are better than the average results (accuracies) of CGP in case
of both training and test data. The best accuracy of the experimental material
is also better than that of CGP. This at least shows that evolving configura-
tions of materials holds promise for classification. The experiments B used
Mecobo 3.5, which used analogue signals for inputs, outputs and configura-
tion inputs. The statistical significance tests have also been performed, which
show that the difference of the results is statistically insignificant according
to U-Test (< 0.05) and KS-Test (< 0.05). The detailed comparison results
are shown in Table 12

A summary of outcomes from these experiments is shown below:

� The results of the experimental material (material sample 1) are better
than the results of CGP, where analogue inputs, outputs and configura-
tion inputs were used with Mecobo 3.5. The experiments were carried
out up to 50 generations.

� The performance of using analogue inputs, outputs and configuration
inputs is better than the performance of using digital inputs, outputs
and configuration inputs according to comparison results of Mecobo
3.5 and Mecobo 3.0.

� In case of Mecobo 3.5, it has been found that the input signals (inputs
and configuration inputs) having only static analogue voltages show
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better results than the results obtained by mixtures of static analogue
voltages and digital square waves for inputs and configuration inputs.

� It has been found that different organisations of electrodes do not matter
in computation. The difference of results is statistically insignificant.

� The choice of polymer (PMMA or PBMA) in material mixture plays no
important role in computation. The difference of results is statistically
insignificant.

� An experimental investigation examined which weight percentage of
SWCNT in PMMA appears to be the most effective for classification.
It appeared that the best results were obtained with 0.05% SWCNT.
However, the results with various mixtures appeared not to be statisti-
cally distinguishable.

7 WALL AVOIDING ROBOT

The task for the robot is to travel around a closed environment avoiding the
walls and obstacles and to cover as much floor space as possible. In this
scenario, the robot has to navigate around an unknown environment avoiding
collision with the walls. The control system is able to use the distance sensors
on the robot, which perform some form of signal processing and use this
information in the control of the motion of the robot using motors. We have
used the Khepera robotic platform, which has 8 short range infra red sensors
and two motors. Generally in evolutionary robotics evolution is performed in
simulation. Solutions based on simulation can be run in faster than using real
robot, as it can ignore the physical properties of the robot and its hardware.

8 EIM CONTROLLED ROBOT

We have adapted a Khepera robot simulator (version 2.0) written by Marcin
Pilat† . Pilat rewrote a Unix based Khepera written by Olivier Michel [16].

Many sets of experiments have been performed here with different maps,
different numbers of input sensors, different input and output mappings etc.
The robot has diameter of 55 nominal units and obstacles or walls are made
from small bricks having width and height 20 unit. The map is 1000 X 1000
unit2.

8.1 Methodology
The simulated robot that has been used in the experiments has 8 infrared sen-
sors (S0-S7) and 2 motors (M1-M2). The robot together with the placement
† http://www.pilat.org/khepgpsim/
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FIGURE 8
Schematic view of the Khepera Robot with the positions of the IR proximity sensors (S0-S7)
and motors (M1, M2).

of sensors and motors that have been used in the experiments is shown in
Figure 8. The sensor distance value (in a range [0, 1023], where 0 means no
object is found and 1023 means an object is in the nearest position) is calcu-
lated as a function of the presence (or the absence) of obstacles (see footnote
1). Random noise corresponding to ±10% of its amplitude is added to the
distance value of the sensor. In experiments, the distance values of sensors
have been used as inputs to the material. The robot moves according to the
speeds (in a range [−10, 10]) of the motors. Random noise of ±10% is also
added to the amplitude of the motor speed while a random noise of ±5%
is added to the direction resulting from the difference of the speeds of the
motors. The motor speed is decided by the output of the carbon nanotube
material.

In case of each individual of the population in each evolutionary run, the
robot controller is allowed to execute for up to 5000 time steps. But if the
robot collides with an obstacle before completing the 5000 time steps, it is
stopped immediately. Also, if robot rotates in the same place for a long time,
it is also stopped. The latter is assessed using the x and y coordinates of
robot’s position from all the timesteps in the past. If the differences between
old and new x and y coordinates are ≤ 30 units (approximately half the diam-
eter of the robot), it is assumed that the robot visits the same place as before,
otherwise it is assumed that the robot is exploring a new area of the map. The
previous (immediate) 50 moves of the robot is not used to prevent a slowly
moving robot being penalized. If the robot rotates in approximately the same
place for 1000 consecutive moves, it is stopped immediately and its overall
fitness is assessed. If robot is not stopped early and it is exploring a new area
of the map, the distance between previous move and the new move is added

IJUC˙0167˙Mohid˙V1 26



EVOLVING SOLUTIONS TO COMPUTATIONAL PROBLEMS 27

FIGURE 9
Task environments used in the robot experiments. In (a) and (b), the obstacles or the walls are
shown in red and the white area of the map is the area where the robot is allowed to move.

to the fitness score. The distance is calculated using Euclidean distance with
x and y coordinates of previous and new move. The better individuals are
decided by higher fitness values.

Five sets (A-E) of experiments have been performed. In all sets of exper-
iments were performed with material sample 1 (according to table 2) and
Mecobo 3.0. In first (A) and fourth (D) sets, the map shown in image 9 (a)
was used. In other sets (B, C and E) of experiments, the map shown in image
9 (b) was used. In all sets of experiments except the set E, only 12 electrodes
from the 16 electrodes have been used (the middle 6 electrodes from each
side of one material sample). These 12 electrodes were used in the following
manner: 6 electrodes have been used as inputs, 2 electrodes have been used
as outputs and the remaining 4 electrodes have been used for configuration
inputs. The 6 inputs were provided by sensors S0, S2, S3, S5, S6 and S7 (see
image 8). In fifth (E) set of experiments all 16 electrodes have been used,
where 8 electrodes (all 8 sensors) have been used as inputs, 2 electrodes as
outputs and the remaining 6 as configuration inputs.

For all sets of experiments, each chromosome defined which electrodes
were either outputs, inputs (receive square waves) or received the config-
uration inputs (square waves or constant voltage). The amplitude of input
electrode voltage was set to 1 (3.5 V).

In all sets of experiments, we used a 25KHz output sampling frequency.
Ten independent runs were carried out for all sets of experiments with 100
generations for each run.

In case of sets A-D, we accumulated output values in a buffer for 20 mil-
liseconds. However, in case of set E, we accumulated output values in a buffer
for 25 milliseconds due to using a greater number of electrodes. Sampling
over longer times is necessary as scheduling in Mecobo is serial. This means
that several sequences of actions (i.e., sending inputs signals, configuration
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Gene Signal applied to, Allowed
Symbol or read from i th electrode values

pi Which electrode 0, 1, 2 . . . 11 (for sets:A-D)
is used 0, 1, 2 . . . 15 (for set E)

si Type 0 (constant) or
1(square-wave)

ai Amplitude 0 , 1
fi Frequency 500 ,501 . . . 10K
ci Cycle 0, 1, . . . 100

TABLE 13
Description of genotype.

inputs etc) do not take place at the same instant. Mecobo maintains a sched-
ule. Thus, it takes some time for Mecobo to circulate signals to each elec-
trode.

8.2 Genotype Representation
In case of all sets of experiments, associated with each electrode there were
five genes which defined which electrode was used as an input or output or
configuration input, or characteristics of the input applied to the electrode:
signal type, amplitude, frequency, cycle time (Section 3).

As we discussed in the sets A-D, each chromosome used ne = 12 elec-
trodes at a time. This means that each chromosome required a total of
12 × 5 = 60 genes. In all experiments, mutational children were created from
a parent genotype by mutating a single gene. In the first four sets of exper-
iments, this means that one of the 60 parent genes was mutated to create a
child. Since in the set E, each chromosome used ne = 16 electrodes, geno-
types have 16 × 5 = 80 genes (so one gene in 80 was mutated). The values
that genes could take are shown in Table 13 where i takes values 0, 1, . . . 11
for first four sets of experiments and values 0, 1, . . . 15 for fifth set of experi-
ments.
The genotype for a chromosome of an individual consists of the 60 genes
shown below:

p0s0a0 f0c0 . . . p11s11a11 f11c11

And, the genotype for a chromosome of an individual consists of the 80 genes
shown below:

p0s0a0 f0c0 . . . p15s15a15 f15c15

For solution with 12 electrodes, the first 30 gene values of a chromosome
are related to inputs and they are:
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p0s0a0 f0c0 . . . p5s5a5 f5c5

and, the last 12 gene values of a chromosome are related to outputs and
they are:

p10s10a10 f10c10 p11s11a11 f11c11

For solution with 16 electrodes, the first 40 gene values of a chromosome
are related to inputs and they are:

p0s0a0 f0c0 . . . p7s7a7 f7c7

and, the last 12 gene values of a chromosome are related to outputs and
they are:

p14s14a14 f14c14 p15s15a15 f15c15

In these input and output genes, only the p j (here, the values of j are 0-5
and 10-11 for solutions with 12 electrodes and values of j are 0-7 and 14-15
for solutions with 16 electrodes) has any effect, the remainder are redundant.
The gene p j decides which electrode will be used for the inputs and outputs
of the device. Thus, mutations in these genes can choose a different electrode
to be used as an input or output.

8.3 Input Mapping
In sets A-C and E, the inputs to the electrode array were square waves with
a fixed duty cycle. The cycle was determined by a linear mapping of the
distance value of a sensor. Denote the distance value of i th sensor by Ii , where
i takes values 0-5 (corresponding to 6 sensors) or 0-7 (corresponding to 8
sensors). Denote the maximum and minimum distance values of a sensor by
Iimax and Iimin respectively. Denote the maximum and minimum allowed cycle
times be denoted by Cmax and Cmin respectively. Then the linear mapping
given in Equation 7 allows the distance value of i th sensor, Ii to map to a
square-wave cycle time Ci which was applied to a given electrode.

Ci = ai Ii + bi (7)

where the constants ai and bi are found by setting Ii and Ci to their respective
maximum and minimum and solving for ai and bi .

ai = (Cmax − Cmin)/(Iimax − Iimin ) (8)

and

bi = (Cmin Iimax − Cmax Iimin )/(Iimax − Iimin ) (9)
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In the experiments we chose Iimin =0, Iimax =1023, Cmin = 0 and Cmax = 100.
And, frequencies of input signals were 5000Hz and amplitudes were 1.

But, in the set D, frequency has been used instead of cycle time for input
mapping, where maximum frequency value was 10KHz and minimum fre-
quency value was 500Hz. The mapping equation was same as other sets, but
instead of cycle time, frequency has been used in equation. The cycle time
used in that set was 50 (each square wave was divided equally into on or off)
and amplitude was 1.

8.4 Output Mapping
We determined the output, by examining the output buffers containing sam-
ples taken from the output electrodes. Since Mecobo 3.0 platform can only
recognize binary values, the output buffers contain bitstrings. In sets A, B and
E, the fraction of ones has been used to get output values. This fitness was
used as it is cycle related. The fraction of ones in the output buffer was lin-
early mapped to motor speed in the ranges [-10, 10]. The Khepera simulator
assumes motor speeds defined in the range [-10, 10]. The mapping is shown
in Equation 10.

oi = −10 + 20onei/numi (10)

Where, onei is the number of 1’s in i th output buffer and numi is the total
number of samples of i th output buffer, oi is the output value used to deter-
mine the i th motor speed of the robot and i takes values 0 or 1 (corresponding
to two motors).

In case of sets C and D, we used a different output mapping that used the
transitions from 0 to 1 in the output buffers to calculate output value. This
was done so that we could ascertain the relative merits of the two mappings.
In the transition-based mapping the transitions in each output buffer were
recorded and the gaps between consecutive transitions were measured and
an average calculated. The thinking behind using a transition based fitness is
that may be useful as it is cycle and frequency related. An example of average
gap calculation for an output electrode is shown in Figure 7

The average transition gap was linearly mapped to the ranges [-10, 10].
This was done using Equation 11.

oi = −10 + 20avgi/(numi − 2) (11)

Where, avgi is the average transition gap of i th output buffer, numi is the total
number of samples of i th output buffer, oi is the output value to determine i th

motor speed of robot and i takes values 0 or 1 (corresponding to two motors).
The highest average transition gap can be (numi − 2) when first transition
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happens at index 0 (output value 0 at index 0 and value 1 at index 1) of
output buffer and last transition happens at index (numi − 2) (output value 0
at index (numi − 2) and value 1 at index (numi − 1)) and no other transition
happens in the middle.

9 EXPERIMENTS

For each of the experiments a 1 + λ − E S evolutionary algorithm with λ = 4
was used. In case of all experiments, a child replaced the parent if its fitness
was greater than or equal to the parent.

In case of first map (a), the starting position of the robot was center of
the map and in case of second map (b), the starting position of the robot was
upper left corner of the map.

9.1 Analysis of Results
In case of experiments A, in five cases a robot controller was evolved that
could explore the complete map. In one of these cases however the robot
eventually collided with wall. It was quite challenging for the robot to escape
from the middle of the map, where there are lots of walls (note that robot
started from the center position of the map). In three runs, the robot could not
escape from the middle zone of the map because of colliding with the wall.
In the case of the remaining two runs the robot could escape from the middle
zone, but could not explore the full map because constantly exploring a lim-
ited region of the map (roughly half). The minimum number of generations
required to produce a robot that could explore the full map without colliding
with wall was 21.

In case of experiments B, for seven evolutionary runs, a robot controller
was evolved that could explore the full map. However, in four cases the robot
could explore the full map but eventually collided with a wall. Three other
runs produced robot controllers that did not explore the full map. In one of
these cases the robot could explore 4/5 of the map and was continuing its jour-
ney without colliding, but was stopped because it reached 5000 time steps.
The minimum number of generations required to evolve a robot controller
that allowed the robot to explore the full map was 20, however that robot
collided with a wall later. The minimum number of generations it took to
produce a controller capable of allowing a robot to explore the full map with-
out colliding was 33.

In case of experiments C, it was found that in all ten runs robots could not
even escape from upper portion from the map because of colliding with the
obstacles, so none of these robots could explore full map. The highest moves
that the robot could continue without colliding with an obstacle in those 10
runs was 247 and after the move 247 it collided with an obstacle.
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FIGURE 10
Paths of robots exploring the full map without colliding with obstacles. (a) The Path of the robot
in case of one run of experiments A. (b) The Path of the robot in case of one run of experiments
B. In (a) and (b), obstacles are shown in red, robot’s current position is shown using a black ball
and the path through which the robot has already visited the map is shown in grey.

In case of experiments D, we found that in all ten evolutionary runs robots
collided with walls. In case of only 1 run, robot could escape from middle
zone, but then collided and could not proceed further. So none of these robots
could explore the full map. The highest moves that the robot could continue
without colliding with an obstacle in those 10 runs was 91 and after the move
91 it collided with an obstacle.

In case of experiments E, in 4 evolutionary runs, the evolved robot could
explore the full map. Of these, two evolved robots could explore the full map
without colliding with a wall. In case of one run, the robot could explore 4/5
of the map and was continuing its journey without colliding, but was stopped
because it reached 5000 time steps. The minimum number of generations to
explore the full map without colliding was 32.

The third (C) and fourth (D) sets of experiments indicate that an out-
put mapping based on average transition gap does not provide good results,
which show that average transition gap is not suitable method for linear out-
put mapping.

The result of the fifth (E) set of experiments with 6 configuration inputs
were not as good as the result of the second (B) set of experiments with 4
configuration inputs because more configuration inputs might require a larger
number of generations to find better solutions.

The paths of the robot exploring the full map without colliding with obsta-
cles are shown in Figure 10 using two results of experiments A-E on two
different maps (Figure 9 (a)-(b)). The movements of the robot that could not
explore the full map due to colliding with obstacles are shown in Figure 11
using two results of experiments A-E on two different maps (Figure 9 (a)-(b)).

After all five sets of experiments two generalization experiments were per-
formed. In first generalization experiment, the 4 solutions of experiments A,
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FIGURE 11
Paths of robots colliding with obstacles. (a) The Path of the robot in case of one run of experi-
ments A. (b) The Path of the robot in case of one run of experiments C. In (a) and (b), obstacles
are shown in red, robot’s current position is shown using a black ball, the path through which the
robot has already visited the map is shown in grey and the place where the robot has collided is
shown as a yellow star.

which were able to explore the full map (the first map) without colliding
with walls, were transferred to a second map to observe their behaviors. The
starting position of the robot in second map was the upper left corner. It was
found that only one solution allowed the robot to explore the full map with-
out colliding with the wall. Two robots collided with walls and could not
even escape from upper left corner of the map. One robot rotated in the same
place for a long time and could not even escape from upper left corner of the
map. In second generalization experiment, the three solutions, which could
explore the full map (the second map) without colliding with walls from the
experiments B, were transferred to first map to observe their behaviors. The
starting position of the robot in the first map was the center of the map. It
has been found that none of the robots could explore the full map and all
of them collided with walls. In detail, two robots could not get out from the
middle zone of the map and one robot could escape from the middle zone,
but eventually collided with a wall and could not explore the full map. The
greatest time that the robot survived without colliding with walls was 2222.
As before, in the two generalization experiments, the robots were allowed to
move up to 5000 timesteps, however, they were stopped as soon as they col-
lided with walls or rotated in the same place for a long time (see sub-section
8.1).

In case of each of the five sets of simulated robot experiments (sets A-E),
the elapsed time of an evolutionary run varied according to the length of the
time that a robot could survive without colliding with a wall. Individuals of
a population would take longer to run if they did not rotate in the same place
or collide with an obstacle. In case of set A, if robot could not explore the
full map within 100 generations, it took on an average less than 6 hours to

IJUC˙0167˙Mohid˙V1 33



34 MAKTUBA MOHID AND J. F. MILLER

No. Of No. Of. No. Of In. Out. Time
Set Elec. In. Conf. Map. Map. (ms) Map Res.

A 12 6 4 C PO 20 Figure 9 (a) 4
B 12 6 4 C PO 20 Figure 9 (b) 3
C 12 6 4 C TG 20 Figure 9 (b) 0
D 12 6 4 F TG 20 Figure 9 (a) 0
E 16 8 6 C PO 25 Figure 9 (b) 2

TABLE 14
Experimental settings and the results of all sets of robot controlling experiments. All experi-
ments were carried out up to 100 generations and 10 runs. The second, third and fourth columns
show total number of electrodes, number of inputs and number of configuration inputs used in
the experiments respectively. In case of all experiments, 2 electrodes were used for outputs. The
fifth and sixth columns show the used input mapping (C=Cycle time mapping, F=Frequency
mapping) and output mapping (PO=Percentages of ones, TG=Average transition gaps) respec-
tively. The seventh column shows the input-output timing used for the experiments. The eighth
column shows the map used in the experiments. The last column shows the result, where number
of robots are given that explored the full area of the map without colliding with obstacles.

complete the evolutionary run, but if it was able to explore the full map, it
took on an average of 9 hours to complete the run. In case of set B, if robot
could not explore the full map within 100 generations, it took on an average
8 hours to complete the evolutionary run, but if it was able to explore the full
map, it took on an average of less than 15 hours to complete the run. In case
of set C, it took on an average less than 1 hour to complete the evolutionary
run, but none of the robot could explore the full map within 100 generations.
In case of set D, it took on an average less than 4 hours to complete the
evolutionary run, but none of the robot could explore the full map within
100 generations. In case of set E, if robot could not explore the full map
within 100 generations, it took on an average less than 5 hours to complete
the evolutionary run, but if it was able to explore the full map, it took on an
average of less than 9 hours to complete the run.

9.2 Summary Of Robot Controlling Experiments
The experimental settings and the results of all sets of robot controlling exper-
iments have been summarized in table 14 to get a clear overview of the exper-
iments.

The outcomes obtained by the analysis of the results of these robot con-
trolling experiments are shown below:

� Average transition gap is not suitable method for linear output mapping.
� The results of the experiments with 6 configuration inputs were not as

good as the results of the experiments with 4 configuration inputs. This
may be because more configuration inputs require a larger number of
generations to find better solutions.
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� After the generalization experiments, one robot has been found that
could explore full area of a map in case of both maps without collid-
ing with an obstacle.

10 CONCLUSIONS

EIM is hybrid of digital and analogue computing where digital computers are
used to configure materials to carry out analogue computation. This holds the
promise of developing entirely new computational devices. A purpose-built
evolutionary platform called Mecobo, has been used to evolve configurations
of a physical system to classify data and control a robot. The material used is
a mixture of SWCNT and a polymer. The aim of the paper is not to show that
the experimental results of controlling robots using EIM is currently compet-
itive with state-of-the-art but rather to start a new beginning in the world of
computation. In some cases, we found that the robot could explore the full
map without colliding with walls. In other experiments using Mecobo we
have obtained encouraging results on a machine learning classification prob-
lem. In principle, a classifier can be implemented using an electrode array
and a material sample on a microscope slide and some interfacing electronics.
Such a system could act as a low power standalone data classification device.
In addition, we carried out many experimental investigations on factors that
could influence the efficiency of the technique in solving computational prob-
lems. We tried to find out which ratio of SWCNT to polymer material is the
most effective for computation. We found that if the percentage by weight
of SWCNT was greater than or equal to a certain value (0.02), the com-
putational efficiency of all mixtures were statistically indistinguishable. We
also found that different organizations of electrodes do not matter in com-
putation and the choice of polymer in material mixture plays no important
role in computation. We also showed that analogue signals (input, output and
configuration inputs) perform considerably better than digital signals. Exper-
iments on robot control indicated that the output mapping of data read from
the electrode array for the speeds of robot’s motors is an important factor.

There are many questions for the future. Does evolutionary computation in
materio scale well on larger problem instances. What other classes of com-
putational problems are solvable using this technique? What are the most
suitable materials and signal types for EIM? How much computation can we
extract from a small amount of material?
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